

Isolated Hybrid Energy Systems: Lessons from the Past, Options for the Present, Models for the Future

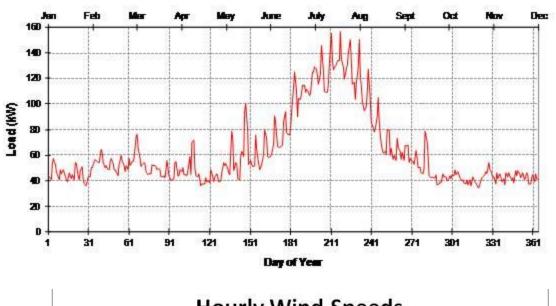
2014 Island Energy Conference

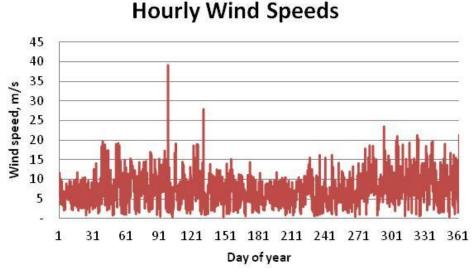
James F. Manwell, Professor Director, Wind Energy Center Dept. of Mechanical and Industrial Engineering University of Massachusetts/Amherst November 7, 2014

Evolution of Hybrid Power Systems for Isolated Grids

- Context
 - Isolated grids typically supplied by diesel generators
 - Diesel generation is expensive, dirty, noisy
 - Fuel needs to be barged or trucked then stored on site
 - Islands are often windy
 - Wind turbines were seen as logical complements to diesels
 - Can plausibly reduce fuel consumption significantly
 - Turbines of 1970s-1990s were of a size that were suited for many isolated grids
 - Photovoltaics were still very expensive then

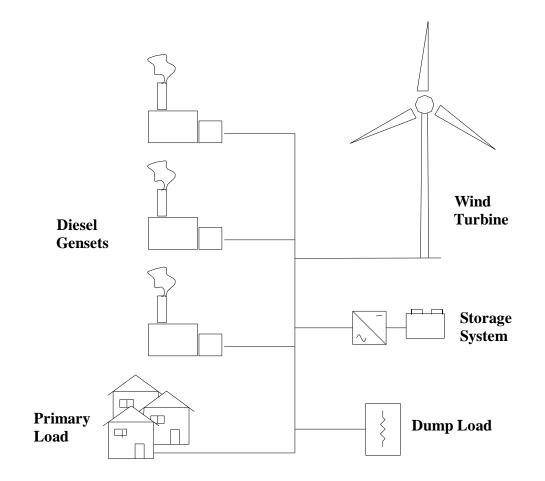
University of Massachusetts **2**





Typical Remote Electrical Load and Wind

- Variable over many time scales
- This location
 has higher load
 in summer but
 higher winds in
 winter



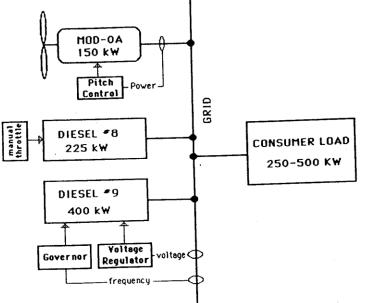
Ũ

UMASS

University of Massachusetts 🌌

Wind Energy Center Cuttyhunk Wind/Diesel System

- Cuttyhunk Island (MA) had one of the world's first wind/diesel systems (mid 1970s)
- Based on Danish Gedser turbine, rated at 200 kW
- Difficulties with paralleling with diesel grid
 - Highlighted need for more comprehensive analysis and better technology!



Block Island Wind/Diesel System

• Block Island (RI) was host to a DOE MOD-0A, 150 kW wind turbine in the early 1980s

Wind Energy Center

Produced much useful data! Source: UMass, 1989

Source: http://www.dvidshub.net/ University of Massachusetts

Pictures: www.mini-grid.com/foula.htm

- Small island off the Shetland Islands
- Wind/pumped storage/diesel power system, late 1980's
- Peak power ~ 25 kW

University of Massachusetts 🌌

Pictures: www.fairisle.org.uk/FIECo/

- Early wind/diesel system (began early 1980's)
- Now 2 turbines (60 kW, 100 kW)
- Innovative load management control strategies

Selawik, AK

Selawik

11997 MAGELLAN Geographix® Santa Barbara, CA (805) 685-3100 www.m

University of Massachusetts

Selawik, AK (2)

- Four 60 kW wind turbines
- Multiple diesel generators
- Excess energy \rightarrow heat
- Installed early 2000's

Diesels

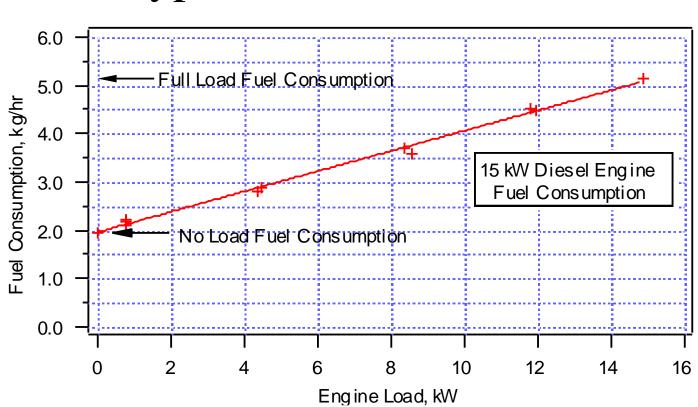
Diesel plant and turbines

University of Massachusetts **2**

Lessons from Experience (1)

- System Design Constraints
 - The load magnitude and temporal profile
 - Existing power system fuel consumption and electrical characteristics
 - The renewable resource magnitude and temporal profile
 - Maintenance infrastructure
 - Site constraints

Lessons from Experience (2)


- Systems level design is needed!
 - Suitable components required
 - Key goal is reduction in overall cost of energy (primarily by reducing fuel consumption)
- Matching load and wind (or solar)
 - Improved with energy storage and/or load management

Diesel Generators

- Necessary component in most isolated grids!
- Typically provide (in addition to "real" power)
 - Frequency and voltage control
 - Reactive power
- Long life requires
 - Minimizing number of starts
 - Maximizing continuous rated-load operation
- Non-zero no-load fuel consumption must be considered!
- Multiple diesels provide backup and fuel savings University of Massachusetts

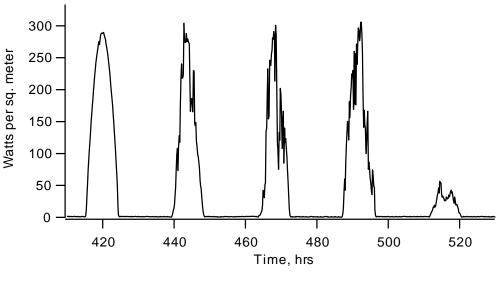
Typical Diesel Fuel Curve

Wind Turbines for Hybrid Systems

- Typically smaller then 500 kW
- Historically fixed pitch turbines with induction generators have been used
- Pitch controlled, variable speed turbines are preferable
- Ease of installation, operation, maintenance and repair are particularly important
- Many commercial turbines are now too large!
- Opportunities for newer technology in mid-size turbines

Photovoltaics (PV)

- Panels of semiconductors which convert sunlight directly to direct current (DC) electricity
- Output power primarily a function of →
 Solar radiation (and thus time of day and year)
- **Power electronic converters** used with AC systems are similar to devices used with wind turbines and, more generally, hybrid power systems
- Prices have dropped dramatically!
 - PVs are now attractive for many isolated grids



Solar Resource

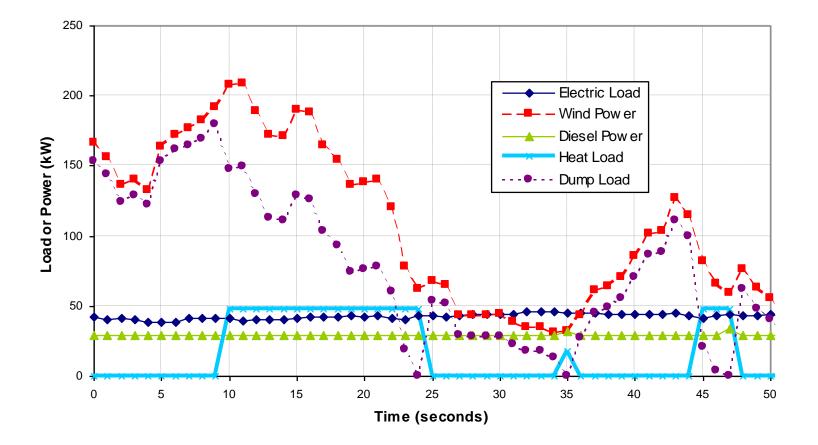
- Maximum (solar constant); 1353 W/m²
- Varies with time, season, weather
- No output at night!
 - Some energy storage may be beneficial

Typical example: Boston Harbor, MA

University of Massachusetts 🌌

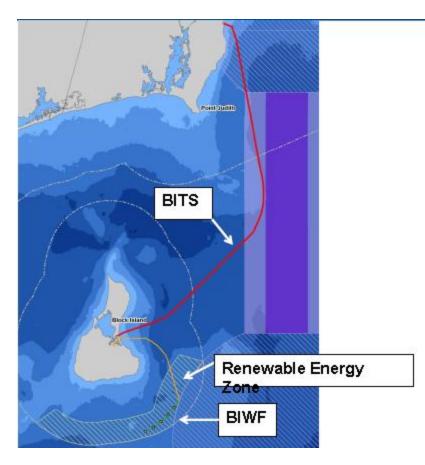
Hybrid System Extra Components

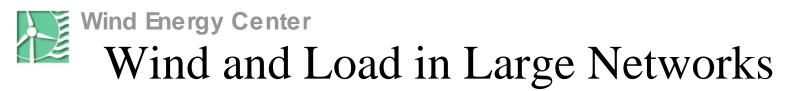
- Dump load
 - Used to balance power in/out; may control frequency (if all diesels are off)
- Supervisory controller
 - Turns on/off various components
- Load management devices
 - Maximizes usefulness of renewable source
- Synchronous condenser
 - Basically a synchronous machine
 - Provides reactive power
- Storage


Storage

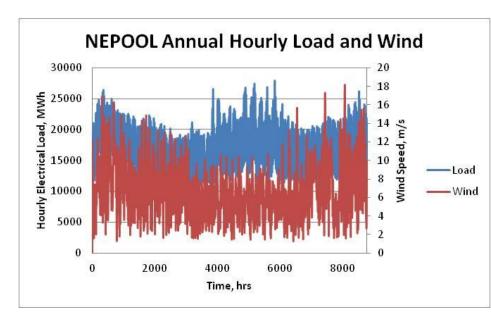
- Batteries
 - Short/medium term (time shifting)
 - Lead acid most common
 - NiCad has some advantages
- Flywheels
 - Short term \rightarrow helps with control
- Pumped hydroelectric storage
 - Medium/long term (daily)storage possible
- End use (product)
 - Water
 - Heat

Wind Energy Center Sample Power Flows





Wind Energy Center Offshore Wind and Islands


- A formerly isolated island may become a way station for the cable from an offshore wind farm!
- Block Island will become an example→

Source: Deepwater Wind University of Massachusetts



- Hybrid power systems can serve as prototypes for large scale renewable energy in mainland grids
- Many options for generation, storage, load management, fuel production
- Principles are very similar

Typical year of New England hourly electrical load and wind speeds averaged over 6 locations

University of Massachusetts 🌌

Conclusions

- Hybrid renewable energy/diesel power systems are attractive options for many isolated grids
- Improvements in technology will make these systems progressively more practical
- Fuel savings of 50% is a plausible goal
- Isolated hybrid systems can serve as models and prototypes for much larger grids in the future

